Multivariate Fitting and the Error Matrix in Global Analysis of Data
نویسندگان
چکیده
When a large body of data from diverse experiments is analyzed using a theoretical model with many parameters, the standard error matrix method and the general tools for evaluating the error may become inadequate. We present an iterative method that significantly improves the reliability, and hence the applicability, of the error matrix calculation. Also, to obtain more accurate estimates of the uncertainties on predictions of physical ob-servables, we present a Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations assumed in conventional error propagation calculations. These methods are illustrated by an example involving the global analysis of parton distribution functions.
منابع مشابه
Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division
In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...
متن کاملMatrix-Variate Beta Generator - Developments and Application
Matrix-variate beta distributions are applied in different fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, exten...
متن کاملSimultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)
In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...
متن کاملConvergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients
In this paper, we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD). We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual. In particular, the obtained upper...
متن کاملCoupling Second-Order Excitation-Emission Spectrofluorimetric Data with Standard Addition method to Quantify Carvedilol in Real Samples
Prediction using pure standards is expected to be biased whenever the slope of the calibration is affected by the presence of sample matrix. Moreover, in the presence of unknown spectral interferents, first-order algorithms like partial least squares cannot be used. In this study, a method for determination of carvedilol (CAR) in tablet and urine samples is proposed by excitation-emission fluor...
متن کامل